

ENGINEERING DEGREE, ENGLISH TAUGHT PROGRAM - Semester 8

Teaching Unit	ECTS	Elective	Credits	Code	Module	Lecture	Lecture & Tutorial	Tutorial	Personnal work
			3.5	ICO4108	Machine Learning	12.00	•	15.00	43.00
			2.0	ENT4120	Sustainable Business, Corporate Social Responsibility and Digital Sobriety	•	6.00	13.50	20.50
ES-TEC4BS2	11.0		1.0	ENT4302	Seminar	6.00 ^{3.00 On.}		12.00	0.00
CORE PROGRAM			2.5	INF4064	NoSql	6.00		15.00	29.00
			2.0	INF4065	GPU programming	6.00		9.00	25.00
			0.0	LAN4084AN	Remedial English Cond.	18.00			<mark>0.0</mark> 0
SEA4BS2	6.0	x	2.5	INF4055	Real-time programming	3.00		15.00	32.00
EMBEDDED SYSTEMS S8	0.0	~	3.5	SYS4041	Robotics	6.00		18.00	46.00
		x	1.5	INF4069	Prompt engineering		·	6.00	24.00
IAD4BS2	6.0		1.5	INF4057	Big Data I (Hadoop)	6.00		6.00	18.00
AI & DATA SCIENCE MAJOR S8			1.5	MAT4057	Aberrant and missing data processing	6.00	•	6.00	18.00
			1.5	INF4067	Introduction to Symbolic AI		9.00	9.00	12.00
SWE4BS2		x	<mark>3.5</mark>	INF4051	Application architecture	6.00		18.00	46.00
SOFTWARE ENGINEERING S8	0.0	A	2.5	INF4063	Software development using DevOps	6.00		12.00	<mark>32.0</mark> 0
RVS4BS2			2.5	INF4059	3D modeling		18.00		32.00
VIRTUAL REALITY & IMMERSIVE SYSTEMS	6.0	х	2.5	INF4060	VR programming		18.00		32.00
			1.0	INF4061	Ray tracing		9.00		11.00
ES-PRO4BS2	12.0		1.0	PLU4002	Challenges and certifications	1.50			20.00
PROJECT & ENTERPRISE	13.0		12.0	PLU4191	Project in Digital Science and Technology	-			<mark>185.0</mark> 0

0/0/0/000			2.5	INF4305	Linux Security Hardening & services	6.00	•	12.00	32.00
CYBERSECURITY MAJOR S8	6.0	х	2.5	INF4105	Windows Security Hardening & Active Directory	•	18.00		32.00
			1.0	INF4309	Cryptographic prococols	9.00	•	3.00	8.00

ICO4108 Machine Learning

Information

Course name	Machine Learning	Professor (Paris Campus)	PREVOST L.
French course name	Machine Learning	Professor (Laval Campus)	PREVOST L.
Coefficient Optional/Mandatory	3.5 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S8

Course Hours

Lecture	12.00 hour(s)
Tutorial/Lab	15.00 hour(s)

Grading	Lab/Tutorial, Final Exam,					
Final exam	1.50 hour(s)					
Course Syllabus						
Learning outcomes	Understand the principles and objectives of supervised learning from examples.					
	Master the algorithms (nearest-neighbor, multilayer and convolution networks).					
	Be able to size and optimize an algorithm on a training dataset and using a validation set.					
	Measure the impact of parameters on performance and avoid overlearning.					

Content and chapters

1. INTRODUCTION

Applications in decision support: examples and principles

Data and datasets

Classification or regression?

2. DECIDING WITHOUT LEARNING

The k-nearest neighbor algorithm

Computing distance between data

Boundary between classes

Influence of k on bias and variance

Advantages and disadvantages

3. ARTIFICIAL NEURON AND LEARNING

Human intelligence (learning and reasoning)

Artificial intelligence

Natural neuron

Mathematical modeling

Learning: perceptron rule

Limitation to linearly separable binary problems

4. SINGLE LAYER NEURAL NETWORKS

Applications to multi-class problems

Learning: delta rule and gradient descent

5. MULTI-LAYER NEURAL NETWORKS

Need for hidden layer(s)

Learning: backpropagation

Decision: WTA/rejection

6. GOOD PRACTICES

Input/output pre-processing: normalization, class balancing

Stochastic gradient, total, mini-batch

Fixed, variable, optimal learning step (quasi-Newton method with BFGS algorithm)

7. PERFORMANCE MEASURES

Performance measures: error rate, rejection rate, confusion matrix, precision, recall, ROC curve, risk

Learning objective: minimize bias and variance

Validation set

Search for the number of hidden cells by cross-validation and early stopping

8. CONVOLUTION NETWORKS

Classical image processing techniques: convolution, SIFT, HOG and LBP operators

Convolution networks

Shared weights,

Convolution and pooling layers

Introduction to deep learning

Prerequisites

ENT4120 Sustainable Business, Corporate Social Responsibility and Digital Sobriety

Information

Course name French course name	Sustainable Business, Corporate Social Responsibility and Digital Sobriety Développement Durable, RSE et sobriété numérique	Professor (Paris Campus) Professor (Laval Campus)	COURBIN P. COURBIN P.
Coefficient Optional/Mandatory	2.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S8

Course Hours

Lecture/Tutorial(6.00 hour(s)
Tutorial/Lab	13.50 hour(s)

Grading	Group project, Group presentation,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	 This module aims to develop the systemic thinking skills of future engineers. At the end of this course, students will be able to Understand new approaches (digital and beyond) Question the role of the digital engineer Define the scope of a project by integrating the entire ecosystem and its stakeholders Classify the stakeholders in order of priority for action Propose simple digital solutions by integrating various dimensions of sustainable development
Content and chapters	Chapter 1 Introduction: Sustainable Development & Digital Sobriety: Sharing facts, history, new models and examples Chapter 2 New tools to structure a project by designing it systemically
Prerequisites	Basic knowledge of Sustainable Development

ENT4302 Seminar

Information

Course name	Seminar	Professor (Paris Campus)	POIRIER S.
French course name	Colloque	Professor (Laval Campus)	POIRIER S.
I		l	
Coefficient	1.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S8

Course Hours

Lecture	3.00 hour(s)
Online Lecture	3.00 hour(s)
Tutorial/Lab	12.00 hour(s)

Grading	Group project,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	Colloquium in Guébriant and on the campus: Meet with partner companies present and alumni Develop your professional network Becoming professional (CV, interview, salary negotiation) Opening up to entrepreneurship Strengthen cohesion among 4A students
Content and chapters	In Guébriant and on the differents campus, alumni and diffrents contractor host thematic workshops on: The development of skills Knowing how to imagine the company you are looking for The professional project The professional network Negotiation: internship, alternance, first job Further training & international Entrepreneurship How to quit your first job The Spirit of Defense and Digital Sovereignty Partner companies also offer conferences and workshops on their professional activities.
Prerequisites	None

INF4064 NoSql

Information

Course name	NoSql	Professor (Paris Campus)	DA-RUGNA J.
French course name	NoSql	Professor (Laval Campus)	AUBIN J.
Coefficient Optional/Mandatory	2.5 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S8

Course Hours

Lecture	6.00 hour(s)
Tutorial/Lab	15.00 hour(s)

Grading	Final Exam,
Final exam	1.00 hour(s)
Course Syllabus	

Learning outcomes	Understand and manipulate NoSQL databases
Content and chapters	 Introduction (1h30) BigData: needs and principles (4V) NoSQL: principles (BASIC) and different types. MongoDB presentation (1h30) Focus on Document Oriented NoSQL databases. Features of MongoDB. Different types of deployment architecture. Good administration practices: backup, resilience, performance improvement, cybersecurity. MongoDB TP (3h) Implementation of a simple MongoDB database. Application of some good administration practices. Command line database operation. Extract Transform Load (ETL) (1h30) FetLk Principles Feedback on projects Presentation of an ELK server TP ELK (6h) Implementation of an ELK server Taking into account of OpenData data provided by the teacher (in order to frame this lab) Adaptation / filters of data according to the set context Data exploitation via Kibana Results of the practical work (1h30) Correction of the TP Focus on the important concepts.
Prerequisites	3A courses : Databases, Operating systems and System administration.

INF4065 GPU programming

Information

Course name	GPU programming	Professor (Paris Campus)	BRIERE A.
French course name	Programmation GPU	Professor (Laval Campus)	VILELA MONTEIRO D.
Coefficient Optional/Mandatory	2.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S8

Course Hours

Lecture	6.00 hour(s)		
Tutorial/Lab	9.00 hour(s)		
Evaluation			

Grading	Final Exam,
Final exam	0.00 hour(s)

Course Syllabus

Design parallel algorithms for GPU

Content and chapters	Introduction to GPUs
	History and Evolution of GPUs
	GPU vs CPU: Understanding the Differences
	GPU Architecture
	Core Components of a GPU
	Memory Architecture and Management
	Understanding Parallel Processing Capabilities
	Basics of GPU Programming
	Introduction to CUDA and OpenCL
	Understanding the GPU Programming Model
	Writing Simple Programs: Hello World on GPU
	Parallel Algorithms for GPUs
	Principles of Parallel Algorithm Design
	Parallel Patterns and Practices
	Case Studies: Implementing Common Algorithms on GPU
	Advanced GPU Programming Techniques
	Optimizing GPU Programs for Performance
	Debugging and Profiling GPU Code
	Interoperability with CPU Code
	Real-world Applications and Case Studies
	GPU in Scientific Computing
	GPUs in Machine Learning and AI
	Future Trends in GPU Programming
Prerequisites •	Basic understanding of programming (preferably in C/C++)
•	Fundamental knowledge of computer architecture
•	Familiarity with concepts of parallel computing (optional but beneficial)

INF4051 Application architecture

Information

Course name	Application architecture	Professor (Paris Campus)	IONASCU F.
French course name	Architecture d'applications	Professor (Laval Campus)	IONASCU F.
Coefficient	3.5	Programs	Engineering Degree Engineering Degree by apprenticeship
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
		Semester	S8

Course Hours

Tutorial/Lab 18.00 hour(s)	

Evaluation

Content and chapters

н

Grading	Final Exam, Group project,
Final exam	1.00 hour(s)
Course Syllabus	
Learning outcomes	 Define separations, layers, organize components and services Take into account technical constraints Document an architecture

- Create a client-server architecture
- Architectural Design Principles
 - Separation of concernsModularity and encapsulation
 - Abstraction, information hiding
 - Abstraction, information maing
 - Low coupling and high cohesion
 - Scalability and PerformanceFlexibility and scalability
 - Flexibility and scalability
 - Reusability and maintainability
- Principles of dependency search and dependency injection.
- Relations and communication between modules, their abstraction and the notion of high-level interface.
 - Interface standards (SOAP, REST)
 - API design principles; gateways
 - Synchronous-Asynchronous Messages
- Architectural styles (monolithic N-tier, client-server, micro-services, MVC, service-oriented)
- Selection of an architecture in relation to the software / system objective, design compromise.
- Architecture documentation C4, UML; API Documentation

Possible practical realization:

heavy client, monolithic server, mySQL or MongoDB DB, REST API, in high level language (Java, Spring Framework)

Prerequisites	Object Oriented Programming
	Tools for Software Development
	Application Design

INF4063 Software development using DevOps

Information

Course name French course name	Software development using DevOps Developpement logiciel en processus DevOps	Professor (Paris Campus) Professor (Laval Campus)	FARCY V. FARCY V.
Coefficient Optional/Mandatory	2.5 Mandatory	Programs	Engineering Degree Engineering Degree by apprenticeship Engineering Degree, English Taught Program
		Semester	S8

Course Hours

Lecture	6.00 hour(s)
Tutorial/Lab	12.00 hour(s)

Grading	Final Exam,	
Final exam	1.00 hour(s)	
Course Syllabus		
Learning outcomes	DevOps process for software development Design and maintain automatic pipelines for continu	ous integration, delivery and deployment
Content and chapters	 DevOps Methodology Continuous integration, continuous delivery, continuous deployment The environments (dev, staging, test, production) The monitoring, the metrics Tools: Docker, Kubernetes, GitLab 	
Prerequisites	INF4052	Virtualisation, conteneurisation et déploiement cloud

PLU4002 Challenges and certifications

1.50 hour(s)

Information

Course name	Challenges and certifications	Professor (Paris Campus)	BRIERE A.
French course name	Challenges et certifications	Professor (Laval Campus)	REY R.
Coefficient Optional/Mandatory	1.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S8

Course Hours

Lecture

Grading	Individual Project,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	Acquire new experiences, knowledge and skills that complement the modules of the academic curriculum.
Content and chapters	Each student chooses two activities (2 moocs or 1 mooc/1 challenge or 2 challenges) per semester among those validated and referenced by the teaching staff.
	To be validated, a mooc must have a duration of at least 5 hours. In the case where a mooc has a duration of at least 40 hours, it can be accepted to validate the two activities requested.
Prerequisites	None

PLU4191 Project in Digital Science and Technology

Information

Course name	Project in Digital Science and Technology	Professor (Paris Campus)	FARCY V.
French course name	Projet scientifique et technique 4A	Professor (Laval Campus)	REY R.
Coofficient	12.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory	Tiograms	Engineering Degree, English Taught Program
		Semester	S8

Course Hours

Grading	Individual Project, Group project, Group presentation,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	At the end of this module, the students will be able to carry out a scientific and technical project in virtual
Content and chapters	This module defines the basics of operational project management in a context similar to a professional one. Students are entrusted with the mission of providing an answer to a problem proposed by a professional sponsor (company, teacher, research laboratory) or as part of a business creation. • Management of human relations associated with a project • Problematization • Definition and framework of a project • Study and proposal of the choice of solutions • Project organisation • Produce and verify compliance • Delivery documentation • Deliver
Prerequisites	4A-S7 level validated