

ENGINEERING DEGREE - Semester 7

Teaching Unit	E <mark>CTS</mark>	Elective	Credits	Code	Module	Lecture	Lecture & Tutorial	Tutorial	Personnal work
			<mark>3.0</mark>	INF4032	Computer networks	12.00		15.00	<mark>33.00</mark>
			2.0	INF4033	System programming	9.00		9.00	22.00
ES-TEC4BS1			2.0	MAT4052	Numerical in Python	9.00		9.00	22.00
CORE PROGRAM - SCIENCE AND TECHNOLOGY	<mark>13.0</mark>		1.0	INF4046	Applied Cryptography	3.00		9.00	8.00
			<mark>2.0</mark>	MAT4056	Probabilistic data analysis	•	18.00		22.00
			<mark>2.0</mark>	INF4052	Virtualization and containerization	6.00		12.00	22.00
			<mark>1.0</mark>	INF4103	Information Systems architecture	9.00			11.00
	(<mark>3.0</mark>		1.0	ENT4117	Business game	•	ŧ	18.00	5.00
			0.5	LAN4081AN	English	21.00	ļ	•	<mark>19.00</mark>
ES- <u>HUM4BS1</u> CORE PROGRAM - CORPORATE CULTURE			0.0	LAN4083AN	Remedial English Cond.	15.00	ļ		0.00
			1.0	ENT4305	Internship Preparation	•	<mark>1.50</mark>	<mark>7.50</mark>	11.00
			<mark>0.5</mark>	HUM4041	Human impact on its environment	7.50	ŀ	ŀ	<mark>2.50</mark>
ES-PRO4BS1 CORE PROGRAM PROJECT			7.0	PLU4190	Project in Digital Science and Technology	3.00	•	15.00	140.00
			<mark>1.0</mark>	PLU4001	Challenges and certifications	3.00	ļ	ŧ	17.00
SEA4BS1	6.0	x	2.5	LAB4411	Fieldbus	3.00		15.00	32.00
EMBEDDED SYSTEMS S7	0.0		3.5	SYS4048	Design of programmable components and HDL language	9.00		18.00	43.00
IAD4BS1			1.0	INF4048	Ai for society		9.00		11.00
	6.0	_	2.0	INF4044	Data Engineering		9.00	9.00	22.00
AI & DATA SCIENCE MAJOR S7	0.0	~	1.5	INF4056	Image analysis		3.00	9.00	18.00
			1.5	INF4018	Dataviz			9.00	21.00

ESIEA | Curriculum ENGINEERING DEGREE - semester 7 | 2024/08/28

SWE4BS1		×	<mark>2.5</mark>	INF4066 Application design		6.00		12.00	32.00
SOFTWARE ENGINEERING S7			<mark>3.5</mark>	INF4062	Full-stack development	3.00		21.00	46.00
			2.0	INF4059	3D modeling		12.00		32.00
RVS4BS1 VIRTUAL REALITY & IMMERSIVE SYSTEMS S7	6.0	x	1.0	INF4070	XR Development		9.00		0.00
			1.0	INF4072	Programming Fundamentals for XR		15.00		0.00
			2.0	INF4071	UX Design fundamentals		9.00	-	0.00
			2.5	ENT4304	Cybersecurity ethics & laws	18.00			32.00
CYB4BS1 CYBERSECURITY MAJOR S7	6.0	x	2.5	INF4053	Web penetration testing and remediation		18.00		32.00
			0.5	INF4306	Mobile operating system basics		6.00		4.00
			0.5	INF4307	Hardware analysis basics	•	6.00	-	4.00

INF4032 Computer networks

Information

Course name French course name	Computer networks Réseaux Informatiques	Professor (Paris Campus) Professor (Laval Campus)	HAIDAR B. REY R.
Coefficient Optional/Mandatory	3.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture	12.00 hour(s)
Lab	15.00 hour(s)

Grading	Lab/Tutorial, Final Exam, Individual Project,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	From the basic notions acquired in 3A, this course aims to go up in the layers of the OSI model to reach the level of application protocols (L7). Additional concepts are also covered such as radio and optical media, IPV6, tagged VLANs, dynamic routing, NAT/PAT and RPC.
Content and chapters	 Course content: Reminds of the basic concepts (OSI model, switching, Ethernet, VLAN, IPV4, ARP, DHCP, static routing, xDSL) Signal processing: digitization, transcoding and modulation Optical and radio physical media WIFI IPV6 Dynamic routing TCP, UDP, NAT/PAT, RPC and application protocols The FTTx local loop Introduction to PLC, GSM and satellite Content of the practical works: LAB1: Reminders (Hub VS Switch, network configuration, DHCP) LAB2: Static routing and VLAN LAB3: IPV6 introduction LAB3: IPV6 introduction LAB4: Dynamic routing: quagga router, RIPV2, BGP LAB5: TCP/UDP, DNS and NAT
	 LAB6 : Packet Forging LAB7 : Internet services and PAT (HTTP, FTP, SMTP, POP, etc.)
	LAB8 : LAN services (Files sharing, RPC, SMB, NFS, etc.)
Prerequisites	ESIEA course : INF3050 (Réseaux informatiques)

INF4033 System programming

Information

Course name French course name	System programming Programmation système	Professor (Paris Campus) Professor (Laval Campus)	BRIERE A. REY R.
Coefficient Optional/Mandatory	2.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lab 9.00 hour(s)	Lecture	9.00 hour(s)			
	Lab	9.00 hour(s)			

Grading	Midterm Exam, Lab/Tutorial, Individual Project,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	Study, modify and create programs in C exploiting internal functions of the operating system kernel (direct access to the File System, process and thread management, inter-process communication, network programming, etc.).
Content and chapters	 Advanced C (reminders on compilation, static and dynamic libraries, parameters, debugging) The microprocessor and privileges (ring), system calls Access to File Systems (handling, access rights, links, special files) Process and thread management (creation, synchronisation and destruction) Inter-process communication management (IPC): message queues, tubes, shared memory areas, semaphores, mutex, futex, etc.) Multi-processing and multi-theading Socket programming
Prerequisites	 Operating System" and "System Administration" courses (INF3039, INF3040) IP Networks 3A and 4A (INF3050 and INF4032) C programming

MAT4052 Numerical in Python

Information

Course name French course name	Numerical in Python Numerical in Python	Professor (Paris Campus) Professor (Laval Campus)	HAIDAR S. LE BERRE M.
Coefficient Optional/Mandatory	2.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Grading	Lab/Tutorial, Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	- Mathematically formulate an optimization problem from a problem statement.
	- Select and implement appropriate methods to solve the optimization problem.
	- Interpret and communicate the results of an optimization solution.

Content and chapters Interactive Courses

Lesson 1: Introduction to Optimization

- Definitions, examples, optimization vocabulary.
- Minimization problems.
- Linear programming: normal and standard forms, graphical solution, geometric algorithm.

Course 2: Advanced Linear Programming

- Analytical solution.
- Simplex algorithm, Simplex table.
- Two-phase method, dual problem.

Course 3: Differential Optimization

- Reminder of differential calculus.
- One- and multidimensional search methods.
- Gradient methods, other optimization techniques.

Tutorials

TD1 : Linear Programming and Graphical Visualization in Python

- Analysis of linear programming.
- Using the Matplotlib library to plot 2D functions.
- Create graphical visualizations of linear programming solutions.

TD2: Solving linear programs in Python

- Use the Python libraries Scipy and Pulp.
- Formulate linear models for real-world situations.
- Analyze and apply linear programming theory.
- Practice solving linear problems manually and automatically.

TD3: Numerical Optimization with Python

- Introduction to numerical optimization methods, especially gradient descent.
- Use of TensorFlow and Keras for numerical solution.
- Convergence analysis and evaluation of method efficiency.
- Prerequisites
- Mastery of linear algebra (solving systems of linear equations, Gauss pivot).
- Knowledge of differential calculus (derivative of a one-parameter function, gradient of a multi-parameter function).
- · Programming skills.

INF4046 Applied Cryptography

Information

Course name French course name	Applied Cryptography Cryptographie appliquée	Professor (Paris Campus) Professor (Laval Campus)	LARINIER S. AUBIN J.
Coefficient Optional/Mandatory	1.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture	3.00 hour(s)	
Lab	9.00 hour(s)	

Grading	Final Exam,
Final exam	1.00 hour(s)
Course Syllabus	
Learning outcomes	Understand and manipulate a Public Key Infrastructure (PKI).
Content and chapters	Theoretical course :
	1. Reminders on encryption algorithms (symmetric and asymmetric), hash functions and digital signatures.
	2. Presentation of electronic certificates and certification authorities (private, public, open source). Presentation and operating principle of a PKI. Examples of some standards on PKI. Presentation of good practices in terms of cybersecurity.
	Practical work (Implementation of a PKI):
	1. Implementation of a decentralized PKI. Generation of PGP keys with sending an email to the instructor and mutual authentication.
	2. Implementation of a centralized PKI to secure a web server. Creation of a pyramid of certification authorities (root, domain and user). Creation of a certificate for the web server. Enabling the web server's https protocol. Enabling certificate control of the web server clients.
Prerequisites	3A courses : Computer networks, Operating systems, System administration, Introduction to cybersecurity.

MAT4056 Probabilistic data analysis

Information

Course name	Probabilistic data analysis	Professor (Paris Campus)	PIOT M.
French course name	Analyse probabiliste de données	Professor (Laval Campus)	VALENCE A.
1		l.	
Coefficient	2.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Grading	Lab/Tutorial, Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	 Make a numerical and/or graphical summary of a database. Use the different Bayesian inference functions already available in the free R software. Address problems and decision-making from a probabilistic perspective Represent knowledge using graphs and take into account priors when making decisions.
Content and chapters	 Based on concrete examples using data sets and the R language, the following concepts will be presented: Chapter 1: Independence tests (6h) Performing hypothesis tests in R, p-value interpretation, type I and II errors, Bonferroni corrections Tests of independence between two qualitative variables (Chi2 and Fisher's exact test) Tests of independence between two qualitative variables (Pearson correlation) Chapter 2: Knowledge graphs (6h) Creating a knowledge graph from a succession of Chi2 tests with R Introduction to Bayesian networks with R Conditional probabilities, Bayes' theorem, total probability formula, compound probability formula, joint probability distribution Chapter 3: Knowledge propagation and decision-making (6h) Making probabilistic inferences with R using Bayesian networks Definition of maximum a posteriori and maximum likelihood and application to Bayesian networks with R Integration of priors with R
Prerequisites	Module INF2032 Module MAT3055

INF4052 Virtualization and containerization

Information

Course name French course name	Virtualization and containerization Virtualisation et conteneurisation	Professor (Paris Campus) Professor (Laval Campus)	HEISS G. REY R.
Coefficient Optional/Mandatory	2.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture	6.00 hour(s)
Tutorial/Lab	12.00 hour(s)

Final exam 1.46 hour(s) Course Syllabus Identify the underlying virtualization and containerization technologies for implementing virtualized services. Implement and administer a small virtualized/containerized services infrastructure locally. Identify and leverage commercial virtualization/containerization solutions on the market. Content and chapters Introduction Background: Isolate before virtualizing Isolate before containerization (objective, benefits, architectures) Limitations and requirements (hardware and network) Virtualization Virtualization Virtualization Virtualization Virtualization and containerization (objective, benefits, architectures) Limitations and requirements (hardware and network) Virtualization Virtualization Virtualization and containerize (ivm, virtualbox, vmware-workstation, qemu, etc.) Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.) Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.) 	Grading
Course Syllabus Learning outcomes Identify the underlying virtualization and containerization technologies for implementing virtualized services. Implement and administer a small virtualized/containerized services infrastructure locally. Identify and leverage commercial virtualization/containerization solutions on the market. Content and chapters Introduction Background: Emulate before virtualizing Isolate before containerization (objective, benefits, architectures) Limitations and requirements (hardware and network) Virtualization Virtualization, virtualbox, vmware-workstation, qemu, etc.) Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.)	Final exam
Learning outcomes Identify the underlying virtualization and containerization technologies for implementing virtualized services. Implement and administer a small virtualized/containerized services infrastructure locally. Identify and leverage commercial virtualization/containerization solutions on the market. Content and chapters Introduction Background: Emulate before virtualizing Isolate before containerization (objective, benefits, architectures) Limitations and requirements (hardware and network) Virtualization Virtual machines (jvm, virtualbox, vmware-workstation, qemu, etc.) Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.) 	Course Syllabus
Implement and administer a small virtualized/containerized services infrastructure locally. Identify and leverage commercial virtualization/containerization solutions on the market. Content and chapters Introduction Background: Emulate before virtualizing Isolate before containerization (objective, benefits, architectures) Limitations and requirements (hardware and network) Virtualization Virtualization Virtualization Virtualization Virtualization Virtualization Virtualization and containerize (jvm, virtualbox, vmware-workstation, qemu, etc.) Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.) 	Learning outcomes
Identify and leverage commercial virtualization/containerization solutions on the market. Content and chapters Introduction Background: • Emulate before virtualizing • Isolate before containerization (objective, benefits, architectures) • Virtualization and Containerization (objective, benefits, architectures) • Limitations and requirements (hardware and network) Virtualization • Virtual machines (jvm, virtualbox, vmware-workstation, qemu, etc.) • Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.)	
Content and chapters Introduction • Background: • Background: • Emulate before virtualizing • Isolate before containerizing • Virtualization and Containerization (objective, benefits, architectures) • Limitations and requirements (hardware and network) Virtualization • Virtualization • Virtual machines (jvm, virtualbox, vmware-workstation, qemu, etc.) • Hypervisors - State of the art technologies (vmware, hyperV, xen, kvm, etc.)	
 LAB: Implementation of an infrastructure based on a type I hypervisor (e.g. proxmox) Containerization State of the art technologies (lxc, lxd, openVZ, docker, etc.) Practical with "docker" + LAB Orchestration Practical with "Swarm" and "compose" + LAB Kubernetes introduction (K8s) + LAB Presentation of commercial offers 	Content and chapters
Prerequisites Operating system System administration System retwork 3A & 4A	Prerequisites

INF4103 Information Systems architecture

9.00 hour(s)

Information

Course name French course name	Information Systems architecture Architecture des systèmes d'information	Professor (Paris Campus) Professor (Laval Campus)	FARCY V. REY R.
Coefficient Optional/Mandatory	1.0 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture

Evaluation

Grading	Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	Identify the architectural elements of an information system within the company.
	Position your project in a global architectural approach to a functional area or district.
	Position your project within the architecture of the company's IS.
	Have a global knowledge of technical solutions for the architecture of information systems, including Cloud Computing solutions.
Content and chapters	System Information : what is it?
	What is urbanization?
	What is architecture?
	Different types of existing architecture The architectures
	Software architecture
	From a centralized model to a distributed model Web architecture IS networks Integration architecture -
	Service oriented architecture
	Cloud architecture
	Specialized architectures
	Architecture and agility
	The architecture of tomorrow / trends

Practical case: architecture and projects, create our IS for an e-commerce application

Ρ	rer	ea	uis	ites	;
	101	сч	uis	nes	•

DBMS - INF3031

Computer network - INF3050

Software development

ENT4117 Business game

Information

Course name	Business game	Professor (Paris Campus)	FOUCAULT A.
French course name	Jeux d'entreprises	Professor (Laval Campus)	FOUCAULT A.
1		I.	
Coefficient	1.0	Programs	Engineering Degree
Ontional/Mandatory	Mandatory		Engineering Degree, English Taught Program
		Semester	S7

Course Hours

Tutorial/Lab 18.00 hour(s)

Grading	Final Exam, Group project, Group presentation,
Final exam	4.00 hour(s)
Course Syllabus	
Learning outcomes	students will be able to :
	- analyse a dashboard of business performance indicators,
	- propose corrective actions
	- justify their business management decisions
Content and chapters	Chapter 1: Business Monitoring tools : Balance Scord Card, North Star Metrics and the concept of source indicators
	Exercise: Internal and external diagnosis of a company to produce a balanced scorecard and define its North Star Metric
	Chapter 2: The financial health of the company, the notion of cash flow, of break-even and net income.
Prerequisites	Knowledge of basic economics

LAN4081AN English

Information

Course name	English	Professor (Paris Campus)	COCKS J.
French course name	Anglais	Professor (Laval Campus)	HESSION J.
Coefficient Optional/Mandatory	0.5 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture

21.00 hour(s)

Grading	Lab/Tutorial, Individual presentation,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	Employ appropriate formality and conventions appropriate to the context in the writing of professional e-mails, CVs, personal profiles and covering letters. Take the initiative in an interview, and expand and develop ideas with little help or prodding from an interviewer. Describe the significance of their education and experiences convincingly in a 60 second pitch.
Content and chapters	Various written assignments with instructor feedback Read and understand job application materials Prepare for job interviews Study examples of 60 second pitches and record an individual pitch
Prerequisites	No prerequisites

LAN4083AN Remedial English

Information

Course name French course name	Remedial English Anglais renforcé s7	Professor (Paris Campus) Professor (Laval Campus)	COCKS J. HESSION J.
Coefficient Optional/Mandatory	0.0 Conditional	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

5)

Grading	Final Exam,
Final exam	1.25 hour(s)
Course Syllabus	
Learning outcomes	A complement to the English module
Content and chapters	
Prerequisites	none

ENT4305 Internship Preparation

Information

Course name	Internship Preparation	Professor (Paris Campus)	DAOUDI A.
French course name	Préparation à la recherche de stage	Professor (Laval Campus)	HAJADI R.
1		L	
Coefficient	1.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S7

Course Hours

Lecture/Tutorial(1.50 hour(s)
Tutorial/Lab	7.50 hour(s)

Grading	Individual Project,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	- Define your professional project, identify your assets and learn to put them forward.
	- Optimize your application tools (CV, LM, professional social networks) and the different channels.
	- Establish a search strategy and organization, communicate with recruiters in an efficient and professional manner
Content and chapters	Internship search tools and strategy (handled internally) Business conferences organized by the Corporate Relations Department (see calendar) Specific conference: "Searching for an internship HR interviews (for students in difficulty)
Prerequisites	3A Professional Project Seminar

HUM4041 Human impact on its environment

7.50 hour(s)

Information

Course name French course name	Human impact on its environment Impact humain sur son environnement	Professor (Paris Campus) Professor (Laval Campus)	ROUSSEL L. ROUSSEL L.
Coefficient Optional/Mandatory	0.5 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture

Grading	Final Exam,
Final exam	0.50 hour(s)
Course Syllabus	
Learning outcomes	Feel the social and environmental stakes Understand the scientific foundations of the ecological transition To question and act on the implementation of ecological transition in the engineering profession
Content and chapters	5 sessions of 1h30 : Energy : history and definition - types of energy (fossil, renewable) - consumption & orders of magnitude - outlook and consequences Climate and climate change : history and definition - greenhouse gas emissions - outlook and consequences Natural resources : the limits of raw materials - pollution emissions - outlook and consequences Biodiversity : history and definition, outlook and consequences, food production, waste Game and evaluation
Prerequisites	Have read the links in the bibliography

PLU4190 Project in Digital Science and Technology

Information

Course name French course name	Project in Digital Science and Technology	Professor (Paris Campus) Professor (Laval Campus)	FARCY V.
Coefficient	7.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory	Semester	Engineering Degree, English Taught Program S7

Course Hours

Lecture	3.00 hour(s)
Tutorial/Lab	15.00 hour(s)

Grading	Individual Project, Group project, Group presentation,	
Final exam	0.00 hour(s)	
Course Syllabus		
Learning outcomes	This module defines the basics of operational project management in a context similar to a professional	one.Student
	At the end of this module, students will be able to:	
	- identify the stakeholders of a project	
	- design a technical solution	
	- regulate teamwork	
	- deliver a result	
Content and chapters	This module defines the basics of operational project management in a context similar to a professional Students are entrusted with the mission of providing an answer to a problem proposed by a professional s (company, teacher, research laboratory) or as part of a business creation.	one ponsor
	Management of human relations associated with a project	
	Problematization	
	Definition and framework of a project	
	Study and proposal of the choice of solutions	
	Project organisation	
	Produce and verify compliance	
	Delivery documentation	
	Deliver	
Prerequisites	3A level validated	

PLU4001 Challenges and certifications

3.00 hour(s)

Information

Course name	Challenges and certifications	Professor (Paris Campus)	BRIERE A.
French course name	Challenges et certifications	Professor (Laval Campus)	REY R.
L		L	
Coefficient	1.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S7

Course Hours

Lecture

Grading	Individual Project,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	Acquire new experiences, knowledge and skills that complement the modules of the academic curriculum.
Content and chapters	Each student chooses two activities (2 moocs or 1 mooc/1 challenge or 2 challenges) per semester among those validated and referenced by the teaching staff.
	To be validated, a mooc must have a duration of at least 5 hours. In the case where a mooc has a duration of at least 40 hours, it can be accepted to validate the two activities requested.
Prerequisites	None

INF4066 Application design

Information

Course name French course name	Application design Conception d'applications	Professor (Paris Campus) Professor (Laval Campus)	IONASCU F. IONASCU F.
Coefficient Optional/Mandatory	2.5 Mandatory	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Tutorial/Lab 12.00 hour(s)			

Evaluation

Grading	Final Exam, Group project,
Final exam	1.00 hour(s)
Course Syllabus	
Learning outcomes	Identify and model use cases and user stories for a simple applicationApply functional design techniques based on use cases and user stories
Content and chapters	Introduction to functional design and use cases Understanding Functional Design: Principles and Benefits Introduction to Use Case Modeling (UML Use Case Diagram) Identify actors, scenarios and use cases Requirements collection and analysis Collect functional requirements from stakeholders Analyze use cases: identify preconditions, postconditions and actor objectives (optional) Prioritization of use cases and requirements Use case implementation Translate use case specifications into functional requirements Concept of module and interface The Clean Architecture proposal; dependency inversion; weak coupling Design of modules and functional components: identify entities, services, gateways, interactors and model them in UML Practical work: Identify and prioritize use cases for a given application scenario Writing use case specifications/user stories for a Java application Using Dependency Inversion for Module Decoupling in Java Applications
	Project:

Application to develop following the Clean Architecture, based on use cases

Tools:

Java, IntelliJ Idea, Git, Maven, JUnit

Prerequisites

- Java
- Object Oriented Programming
- Tools for Software development

INF4062 Full-stack development

Information

Course name	Full-stack development	Professor (Paris Campus)	ROBIN J.
French course name	Developpement Full-Stack	Protessor (Laval Campus)	ROBIN J.
Coefficient	3.5	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree by apprenticeship
		Semester	S7

Course Hours

Lecture	3.00 hour(s)
Tutorial/Lab	21.00 hour(s)

Grading	Lab/Tutorial, Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	 Develop fullstack web applications connecting a heavy frontend client based on reusable, reactive, User Interface (UI) web comoponents with a backend provided as a set of high-level web services. Test, mesure the test coverage and debug the application with specialized tools provided by an Integrated Development Environment
	(IDE), the web browsers and/or their respective extensions.
	Deploy the backend of these applications either on remote cloud or as a container on a local network.
Content and chapters	1. Web standards and architectures
	2. Overview of the Quasabase web development full-stack (Quasar and Vue in the front-end, Supabase in the back-end and Cypress for testing)
	3. Component and template based reactive GUI programming with Vue
	4. Responsive GUI design with Quasar
	5. Web application testing with Cypress
	6. Manual back-end content management with Supabase Studio
	7. User authentication with Supabase Auth
	8. Front-end routing with Vue Router
	9. Front-end - back-end synchronization with the middleware Supabase REST and Supabase Realtime (publication-subscription pattern)
Prerequisites	Basic knowledge of the following web standards:
	- JavaScript 7+, JSON and the Domain Object Model (DOM) API
	- HTML 5
	- CSS 3+
	- HTTP and URL
	Experience in programming in some multiparadigm, imperative, functional, event-driven and object-oriented language