

ENGINEERING DEGREE - Semester 5

Teaching Unit	ECTS	Elective	Credits	Code	Module	Lecture	Lecture & Tutorial	Tutorial	Personnal work
			1.5	LAB3040	C project			12.00	18.00
			3.5	INF3050	Networks computing		12.00	24.00	34.00
			3.5	INF3132	Object-Oriented Programming en Java	-	12.00	24.00	34.00
MIF3BS1	16.0		2.0	INF3039	Operating systems	-	12.00	15.00	13.00
MATHEMATICS AND COMPUTER SCIENCE			2.5	INF3031	Databases	-	12.00	15.00	23.00
			3.0	MAT3055	Probabilities	-	18.00	27.00	15.00
			0.0	INF3036	Computer Science pre-requisites Year 3 Cond.		21.00	·	0.00
			0.0	SYS3043	Electronics pre-requisite year 3 Cond.		15.00		0.00
ES-PRO3BS1	4 0		2.0	PLU3031	Technical challenges	1.50		24.00	20.00
PROJECTS			2.0	PLU3033	Design sprint	3.00		21.00	20.00
SYS3BS1	7.0		4.0	SYS3045	Digital signal processing & applications		15.00	30.00	35.00
PHYSICS, ELECTRONICS AND SYSTEMS	CS, ELECTRONICS AND SYSTEMS 3.0 SYS3041 Processor architecture			12.00	15.00	33.00			
			0.0	LANXX83XX	Second language - FLE Opt.	(15.00)			(0.00)
HUM3BS1 ENGINEER PROFESSIONAL SKILLS	3.0		2.0	LAN3081AN	English	21.00			19.00
			1.0	PLU3196	Asserting oneself			12.00	8.00
			0.0	ENT3115	Conferences & Seminars	9.00		•	0.00
			0.0	TEX3063	Remedial French Cond.	1.50		•	0.00
			0.0	LAN3083AN	Remedial English Cond.	15.00		•	0.00

LAB3040 C project

Information

Course name	C project	Professor (Paris Campus)	ERRA R.
French course name	Projet C	Professor (Laval Campus)	CLERGUE M.
1		L	
Coefficient	1.5	Programs	Engineering Degree
Optional/Mandatory	Mandatory	Somester	
		Semester	00

Course Hours

Lab		

12.00 hour(s)

Grading	Group project,
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	 Through the development of a C language application, this module aims to achieve the following learning objectives: Comprehend the various stages involved in creating a computer project based on specifications or a brief. Learn to manage a project within a group setting. Determine the prior programming knowledge necessary to implement in order to accomplish a tangible project.
Content and chapters	The course is structured to address methodological and technical queries that students encounter during the project's development process.
Prerequisites	Proficiency in C programming.

INF3050 Networks computing

Information

Course name	Networks computing	Professor (Paris Campus)	HAIDAR B.
French course name	Réseaux Informatiques	Professor (Laval Campus)	REY R.
1		I.	
Coefficient	3.5	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S5

Course Hours

Lecture/Tutorial(12.00 hour(s)
Lab	24.00 hour(s)

Grading	Final Exam, Individual Project,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	In terms of network standardization, students will be able to list the major organizations and their areas of expertise.
	Students will be able to describe how the Ethernet protocol and the TCP-IP protocol stack work.
	They will be able to characterize the electrical media used in local area networks (LAN).
	They will practically implement a local area network (LAN) and will be able to:
	Create and diagnose a wired LAN;
	Administer physical or virtual network equipments;
	Configure and diagnose network connectivity for multiple operating systems (Windows / Linux);
	Manage simple network services (DHCP, ARP, DNS).
Content and chapters	Course :
	1. Standardisation : The OSI model, IEEE 802, IETF
	2. Classification of networks according to space, topology or use.
	3. Electrical media
	4. The local network: Media access methods, Ethernet, VLAN, equipment
	5. TCP-IP: History, IPV4, ARP, ICMP, DHCP, static routing
	6. Introduction to application protocols : DNS, HTTP
	LAB :
	LAB 1: Reminder of the Linux system commands.
	LAB 2: Handling of equipment (physical or simulated).
	LAB 3 : Micro LAN (Ethernet and IP).
	LAB 4 : Mini LAN (ICMP, ARP, DHCP).
	LAB 5: Static routing.
	LAB 6: VLAN and inter-VLAN routing.
	LAB 7: Name resolution.
Prerequisites	Operating system (ESIEA course INF3039)

INF3132 Object-Oriented Programming en Java

Information

Course name	Object-Oriented Programming en Java	Professor (Paris Campus)	IONASCU F.
French course name	Programmation orientée objet en Java	Professor (Laval Campus)	VILELA MONTEIRO D.
1		I.	
Coefficient	3.5	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
	·	Semester	S5

Course Hours

Lecture/Tutorial(12.00 hour(s)
Lab	24.00 hour(s)

Grading	Midterm Exam, Lab/Tutorial, Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	Identify the components of a simple or complex real-world object and model it in UML
	 Use the fundamental concepts of the object oriented languages (abstraction, inheritance, polymorphism, encapsulation, and composition)
	Develop a program in Java, applying good coding rules and using the JDK libraries
Content and chapters	1. Introduction to the Programming Paradigm
	2. Java Basics and the Java Environment (JDK/JRE), Coding Rules, Memory Management, Javadoc
	3. Objects, Classes, Interfaces, Abstract and Concrete Types
	4. Key OOP concepts : Abstraction, Inheritance, Encapsulation, Polymorphism, Composition
	5. UML Class Diagram
	6. Exceptions, Input/Output
	7. Genericity and Collections
Prerequisites	Procedural programming
	Data types and structures

INF3039 Operating systems

Information

Course name	Operating systems	Professor (Paris Campus)	BRIERE A.
French course name	Systèmes d'exploitation	Professor (Laval Campus)	AUBIN J.
1		L	
Coefficient	2.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
	-	Semester	S5

Course Hours

Lecture/Tutorial(12.00 hour(s)
Tutorial/Lab	15.00 hour(s)

Grading	Final Exam,
Final exam	0.90 hour(s)
Course Syllabus	
Learning outcomes	 Install, configure and operate a Linux operating system on a multi-system (multi-boot) or virtualized architecture. Use the basic functions of Linux. Know basics of Linux administration.
Content and chapters	 Basics of operating systems (roles of an OS, history, licenses) with a focus on Linux systems. Multi-system or virtualized platforms. Boot sequence. File Systems (partitions, file tree, etc.). Getting started with a Linux operating system Graphical environment, shell Basic commands. User management (principles, groups, sudo, etc.). Introduction to administration Software management (principles, dependencies, compilation of sources, rpm and dpkg systems, etc). Management of services and processes (activity monitoring, start / stop, initV vs systemd). Shell scripts (presentation, scripting) Fundamental of cybersecurity and hardening for Linux operating system (logging, rights).
Prerequisites	None prerequisites

INF3031 Databases

Information

Course name	Databases	Professor (Paris Campus)	ZOGHLAMI S.
French course name	Bases de Données	Professor (Laval Campus)	AUBIN J.
1		i I	
Coefficient	2.5	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S5

Course Hours

Lecture/Tutorial(12.00 hour(s)
Tutorial/Lab	15.00 hour(s)

Grading	Midterm Exam, Lab/Tutorial,
Final exam	2.00 hour(s)
Course Syllabus	
Learning outcomes	Model a relational database schema and write sql queries
Content and chapters	 Introduction to BDDs and DBMSs Introduction to SQL LMD language Initiation to the modeling of a database Deepening of SQL LMD queries Introduction to SQL LCT language and transaction implementation Introduction to non-relational databases
Prerequisites	None

MAT3055 Probabilities

Information

Course name	Probabilities	Professor (Paris Campus)	DA-RUGNA J.
French course name	Probabilités et statistiques	Professor (Laval Campus)	VALENCE A.
1		I.	
Coefficient	3.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
		Semester	S5

Course Hours

Lecture/Tutorial(18.00 hour(s)
Tutorial/Lab	27.00 hour(s)

Evaluation

Grading	Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	Understand the concepts of probability theory and statistics
	Identify the conditions of application and use of the tools on concrete cases

• Apply statistical techniques in different engineering fields (security, medical, decision support, industrial processes, finance...)

Content and chapters

1. Real finite/infinite discrete random variables

- Definitions
- Probability law of a finite discrete real random variable
- · Distribution function of a discrete real random variable
- Moments of a discrete real random variable; Mathematical expectation; Variance and standard deviation.
- 2. Real random variables with density
- Definition
- Density and distribution function
- Examples of functions of a density real random variables
- Mathematical expectation
- Variance and standard deviation

3. Usual discrete laws

- Finite discrete laws
 - Bernoulli's law
 - Binomial law
 - Uniform law on the integer interval [1, n]
- Infinite discrete laws
 - · Poisson's law

4. Usual continuous laws

- Normal law
- Exponential law
- 5. Convergences
- Theorem of the centered limit
- Approximation of the binomial distribution by the Poisson distribution
- Approximation of the binomial distribution by the normal distribution
- 6. Estimation
- Point estimate of a mean-proportion
- Estimation by confidence interval of a mean-proportion

7. Statistical tests

- Comparison of means or proportions of two independent populations
- · Comparison of means or proportions of two independent populations; use of Fisher's and Student's laws
- Chi-square tests of adequacy and independence
- Correlation test
- Linear fitting: Simple linear regression by ordinary least squares (covariance; correlation coefficients)

Prerequisites

Probabilized spaces

- Random experiment
- Events
- Space of events
- Language of events
- Notion of probability
- Finite probability space
- Computation of a probability on a finite probability space
- Equiprobability

2. Conditional probability

- Conditional probabilities
- Formula of compound probabilities
- Total probability formula
- Bayes' formula
- 3. Independence in probability
- Independence of two events
- Independence of an event
- 4. Statistical elements
- Mean; median; mode; quantiles; moments; range; variance; standard deviation and mean absolute deviation
- Histogram, bar chart and cumulative frequency curve

INF3036 Computer Science pre-requisites Year 3

Information

Course name	Computer Science pre-requisites Year 3	Professor (Paris Campus)	DAOUDI A.
French course name	PASS informatique 3A	Professor (Laval Campus)	CLERGUE M.
Coefficient Optional/Mandatory	0.0 Conditional	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S5

Course Hours

Grading	
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	Enhance computer literacy to meet training requirements.Acquire computer skills.
Content and chapters	1. C Programming a. Variables and Constants b. Data types (and representation) c. Functions d. Conditional Instructions e. Itérations f. Arrays g. Recursivity
	2. Advance C Programming : a. Pointers b. Dynamic allocation c. Files d. Structures etc
	3. Algorithmics & Algorithms a. A famous First example : the Traveling Saleman Problem (with Concord) b. Méthods of conception i. Divide and Conquer ii. Greedy algorithms iii. Dynamic Programming iv. Exact Algorithms versus Approximation algorithms c. Algorithmes on numbers d. Algorithms on arrays i. Sequential Search ii. Dichotomic Search iii. An example : exchange of two part of an array iv. Partitionning, mediane etc
	4. Sorting Algorithms : a. Bubble Sort b. Selection Sort c. Insertion Sort d. QuickSort e. MergeSort
	5. Computational Complexity of an algorithms a. Definition b. Examples
Prerequisites	None

SYS3043 Electronics pre-requisite year 3

Information

Course name	Electronics pre-requisite year 3	Professor (Paris Campus)	DAOUDI A.
French course name	PASS électronique 3A	Professor (Laval Campus)	LEFAS P.
Coefficient Optional/Mandatory	0.0 Conditional	Programs	Engineering Degree Engineering Degree, English Taught Program Engineering Degree by apprenticeship
		Semester	S5

Course Hours

Grading	
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	Increase the level of knowledge in electronics to meet the requirements of the training.Acquire skills in electronics.
Content and chapters	Analog Electronics: • Kirchhoff's laws • Millman's theorem • Voltage divider • Operational amplifiers • Passive filters • Active filters Digital electronics: • Boolean logic • Combinatorial circuits • Sequential circuits Basics of microcontrollers: • Basic inputs/outputs to a microcontroller • Basics of serial communication protocols
Prereguisites	None

PLU3031 Technical challenges

Information

Course name	Technical challenges	Professor (Paris Campus)	FARCY V.
French course name	Challenges techniques 1	Professor (Laval Campus)	FARCY V.
I.		L	
Coefficient	2.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S5
Optional/Mandatory	Mandatory	Semester	S5

Course Hours

Lecture	1.50 hour(s)
Tutorial/Lab	24.00 hour(s)

Grading	Group project, Group presentation,
Final exam	0.50 hour(s)
Course Syllabus	
Learning outcomes	Students carry out an IT development project in teams of 2 to 3 people by implementing best software development practices, acquire new experiences, knowledge and skills that complement the modules of the academic curriculum.
	At the end of the technical challenge the student will be able to:
	 design, develop and test a intermediate complexity computer program Apply good development practices Argument implementation choices

Content and chapters	Day 01 - Monday
	Morning:
	Presentation of festival objectives and specific instructions (deadlines, evaluation, penalties, etc.) by the master of ceremonies. (20 minutes)
	Presentation of subjects by teachers (duration depends on number of subjects).
	Formation of teams and assignment of subjects (30 minutes).
	Afternoon:
	Exchange between teacher and groups: presentation of the additional notion, Q&A time (1 hour).
	Group work (reflection):
	Ownership of the project and definition of their objectives.
	Definition of tasks to be carried out
	Allocation of tasks and responsibilities between members. Non-technical responsibilities are not taken into account.
	Production of a deliverable to be uploaded to GitLab by 6pm.
	Day 02 - Tuesday
	Morning
	Technical analysis and design of the project: definition of classes, relationships, interface design.
	Definition and creation of unit tests.
	Afternoon
	development / implementation
	Day 03 - Wednesday
	development / implementation
	Day 04 - Thursday
	For groups: development.
	Atternoon
	Last delivery on GitLab before 11:59 p.m.
	Day 05 - Friday
	Morning from 9am to 1pm, presentations:
	Afternoon: Communication of results and awards ceremony
Prerequisites	Basic level in software development

PLU3033 Design sprint

Information

Course name	Design sprint	Professor (Paris Campus)	FOUCAULT A.
French course name	Design sprint 1	Professor (Laval Campus)	FOUCAULT A.
1		I.	
Coefficient	2.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S5

Course Hours

Lecture	3.00 hour(s)
Tutorial/Lab	21.00 hour(s)

Grading	
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	1. Be able to design a project using design sprint
	Understand the principles of design sprint and how to apply it to projects with a CSR impact.
	Identify community or social needs and opportunities for CSR initiatives.
	Be able to generate creative and innovative ideas to solve social and environmental problems.
	2. Be able to deploy a project with the design sprint
	Master the steps of the design sprint to plan and organize a project with CSR impact.
	Know how to manage resources, deadlines and constraints while integrating CSR values into the project.
	Develop the ability to work in an interdisciplinary team, fostering cooperation, communication and inclusion.
	3. Evaluate the impact of your project
	Learn to define relevant indicators to assess the social and environmental impact of projects.
	Know how to collect and analyze data to measure the effectiveness of CSR initiatives.
	Be able to reflect critically on the results obtained and identify areas for improvement for future projects.
	Synthesize your results, assess your actions (in relation to the objectives set when the project was launched) and capitalize on and pass on your experience (capitalizing on learning outcomes): recruit potential project successors, update your CV and ePortfolio, etc.
Content and chapters	Monday: Understanding Tuesday: Entertain Wednesday: Decide Thursday: Prototype Friday: Test
Prerequisites	None

SYS3045 Digital signal processing & applications

Information

Course name	Digital signal processing & applications	Professor (Paris Campus)	KHODOR N.
French course name	Traitement numérique du signal et applications	Professor (Laval Campus)	GAGEOT S.
I		l	
Coefficient	4.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
		Semester	S5

Course Hours

Lecture/Tutorial(15.00 hour(s)
Tutorial/Lab	12.00 hour(s)
Lab	18.00 hour(s)

Evaluation

Grading	Lab/Tutorial, Final Exam,
Final exam	1.50 hour(s)

Course Syllabus

Learning outcomes	 Acquire a solid understanding of the fundamental concepts of digital signal processing. Develop expertise in digital filtering techniques for processing and analyzing signals in both the time and frequency domains. Develop digital signal processing algorithms.
Content and chapters	 Signal representation Correlative analysis Linear filtering Sampling Discrete Fourier Transform and Fast Fourier Transform Z-transform Digital filter
Prerequisites	 Mathématiques SYS3041: Architecture d'un système à microprocesseur

SYS3041 Processor architecture

Information

Course name	Processor architecture	Professor (Paris Campus)	BRIERE A.
French course name	Architecture d'un système à microprocesseur	Professor (Laval Campus)	CRISON F.
l.		l.	
Coefficient	3.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
	-	Semester	S5

Course Hours

Lecture/Tutorial(12.00 hour(s)
Tutorial/Lab	15.00 hour(s)

Grading	Midterm Exam, Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	 Analyse and identify the different elements of the hardware architecture of a microprocessor or microcontroller system Implement the different mechanisms of programming with a processor-based system Develop a simple application using a peripheral device with interrupt
Content and chapters	Basics of a microprocessor system Internal structure and operating principles • Architecture • Bus • ALU • Control unit • Registers / status registers Programming • Introduction to assembly programming • Programming in C with libraries (BSP) • Introduction to DSP microprocessors
Prerequisites	Basics of digital electronics: combinational and sequential systems.

LANXX83XX Second language - FLE

Information

Course name	Second language - FLE	Professor (Paris Campus)	COCKS J.
French course name	LV2 opt, FLE	Professor (Laval Campus)	HESSION J.
Coefficient Optional/Mandatory	0.0 Optional	Programs	Engineering Degree Engineering Degree Engineering Degree, English Taught Program Engineering Degree
		Semester	S1

Course Hours

Lecture	15.00 hour(s)

Grading	Final Exam,
Final exam	1.25 hour(s)
Course Syllabus	
Learning outcomes	Second languages : German, Spanish, Japanese, Chinese
	Understand the language
	Use the language
Content and chapters	Content according to the group
Prerequisites	none

LAN3081AN English

Information

Course name	English	Professor (Paris Campus)	COCKS J.
French course name	Anglais	Professor (Laval Campus)	HESSION J.
1		l.	
Coefficient	2.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
		Semester	S5

Course Hours

Lactura	21.00 hour(s)
Lecture	21.00 Hour(S)

Grading	Lab/Tutorial, Final Exam,
Final exam	1.50 hour(s)
Course Syllabus	
Learning outcomes	Explain and support their opinions in discussion by providing relevant explanations, arguments and comments on the impact of technology in society. Understand the main ideas of propositionally and linguistically complex discourse, including technical and scientific discussions and relay this information in summary form to an audience.
Content and chapters	The impact of technology on society Describe a process Discuss / debate positive and negative aspects of technology Summarize a source Extract information / take notes
Prerequisites	No prerequisites

PLU3196 Asserting oneself

Information

Course name	Asserting oneself	Professor (Paris Campus)	DAOUDI A.
French course name	Être et s'affirmer en relation	Professor (Laval Campus)	FOUCAULT A.
1			
Coefficient	1.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
		Semester	S5

Course Hours

Tutorial/Lab 12.00 hour(s)

Grading	Individual presentation,				
Final exam	0.00 hour(s)				
Course Syllabus					
Learning outcomes	Develop a better understanding of the emotions and discourse that can arise during communication, particularly intercultural communication.				
	Choose and use appropriate tools/find solutions to resolve conflicts and raise issues constructively.				
	Adapt their behavior and communication to avoid misunderstandings and conflicts, and work harmoniously and constructively with people from different cultures.				
	Organize and participate in meetings to help achieve team/project objectives.				
Content and chapters	Atelier sur la reconnaissance et la gestion des émotions dans des contextes interculturels.				
	Étude de cas sur les malentendus linguistiques et culturels dans les communications internationales.				
	Analyse de vidéos ou de scénarios pour comprendre comment les émotions influencent les interactions interculturelles.				
Séquence sur les techniques de résolution de conflits, incluant la communication non violente et la négociation (ex : DESC, Jeux de rôle pour pratiquer la résolution de conflits dans des situations interculturelles. Étude de cas mettant en avant des conflits interculturels et comment ils ont été gérés avec succès.					
					Séquence sur la communication interculturelle, incluant la compréhension des normes culturelles et des styles de communication.
					Jeux de rôle pour pratiquer des situations de communication interculturelle et d'adaptation de comportement.
	Simulation de scénarios professionnels internationaux pour mettre en pratique les compétences acquises.				
	Séquence sur la planification et la conduite de réunions efficaces, en mettant l'accent sur la gestion du temps et la participation active.				
	Exercices de simulation de réunions interculturelles pour développer la capacité à collaborer et à contribuer.				
	Étude de cas sur des défis rencontrés lors de réunions internationales et comment les surmonter.				
Prerequisites	None				

ENT3115 Conferences & Seminars

9.00 hour(s)

Information

Course name	Conferences & Seminars	Professor (Paris Campus)	KHODOR N.
French course name	Cycle de conférences	Professor (Laval Campus)	AUBIN J.
1		L	
Coefficient	0.0	Programs	Engineering Degree
Optional/Mandatory	Mandatory		Engineering Degree, English Taught Program
1		Semester	S5

Course Hours

Lecture

Grading	
Final exam	0.00 hour(s)
Course Syllabus	
Learning outcomes	 The objectives are to introduce students to : engineering professions, the majors offered at ESIEA, the importance of the professional posture they will have to adopt, engineering ethics.
Content and chapters	Three lectures will be offered during the semester. The topics of these lectures may change from year to year, depending on the needs identified and the quality of the speakers available.
Prerequisites	None.

TEX3063 Remedial French

1.50 hour(s)

Information

Course name	Remedial French	Professor (Paris Campus)	KASOMBO K.
French course name	Projet Voltaire renforcé	Professor (Laval Campus)	CHEVREUL TOURNIQUET S.
i I		l.	
Coefficient	0.0	Programs	Engineering Degree
Optional/Mandatory	Conditional		Engineering Degree, English Taught Program
		Semester	S5

Course Hours

Lecture

Lab/Tutorial, Final Exam, Individual Project,
1.50 hour(s)
The self-paced and face-to-face training sessions offered to the student aim to assist them in reaching the required level in higher education (a score of 70%), in order to overcome difficulties in the use of written French language.
The platform offers several modules allowing you to: - Review the basics of spelling and grammar. - Write simple and casual texts. - Address the essential rules for written communication free of the most common mistakes in professional environments and everyday writing.
No prerequisites, but the diagnostic assessment is offered to: - First-year students - Second-year students who did not achieve a score of 50% in the final assessment of the first year. - Third-year students

LAN3083AN Remedial English

15.00 hour(s)

Information

Course name	Remedial English	Professor (Paris Campus)	COCKS J.
French course name	Anglais renforcé	Professor (Laval Campus)	HESSION J.
1		l.	
Coefficient	0.0	Programs	Engineering Degree
Optional/Mandatory	Conditional	_	
		Semester	S5

Course Hours

Grading	Final Exam,
Final exam	1.25 hour(s)
Course Syllabus	
Learning outcomes	A complement to the English module
Content and chapters	
Prerequisites	No prerequisites